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A maximum entropy distribution has been formulated in which the imposed 
constraint contains a stochastic (rather than a deterministic) variable. The 
distribution depends on the observational bin size through the smoothing of 
population by intrabin averaging. Moments of fluctuations calculated with 
this distribution give bin-size dependences (intermittency exponents) that 
agree reasonably with those obtained from the size dependence in nuclear 
multifragmentation. The exponents depend on the spread of the stochastic 
mechanism (supposed to be a cascading, multiplicative process) and on the 
magnitude of the constraint imposed. An information-theoretic interpretation is 
provided for the relation between statistical and mechanism-induced (dynamic) 
fluctuations. 

KEY WORDS:  Maximum entropy; fragment distribution; nuclear multi- 
fragmentation; intermittency; fluctuation. 

1. I N T R O D U C T I O N  

The existence of sharp fluctuations superimposed on a regular spectra1 
pattern, called "intermittency," arose in turbulence (1 3) and was predicted 
to occur elsewhere (4) mainly due to random processes operating in a 
multiplicative (not additive) fashion. A Landau-inspired idea (called 
Kolmogorov's third hypothesis) envisaged the cascade of energy excess 
from large to small size scales in turbulent fluids. 

More recently intermittency was found and theoretically described in 
nuclear multifragmentation when the products were analyzed as distributed 
in the rapidity scale. (5) A cascade process was again postulated, which is 
indeed not foreign in this context. (6'7) Similar statistical effects have been 
noted in e+-e  annihilation data (8-xl) and in hadronic interactions. (12) 
There were, however, two new aspects not encountered in turbulence: One 
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was the surmise of a phase transition of a nonthermal kind (13' 14) (also met 
with in spin-glasses(15'16)), which had its conceptual roots in the more par- 
ticular, specialized description of nuclear fragmentation as a percolation 
phenomenon (17) (see ref. 16 for the relation between these kinds of phase 
changes and of diffusion-limited aggregation process, as well as for a free 
energy interpretation in a cascade model). Second, in nuclear multi- 
fragmentation the scale change was due to the successive refinement (of the 
rapidity measurements) or, in the current parlance, the decrease of obser- 
vational bin sizes. The repercussion of changes in the observational method 
on the physical process is not a trivial matter and has not been fully 
accounted for in the theories proposed. In this context one is reminded first 
of recent philosophical speculations (not a derogatory word) that connect 
the limits of informational capacity to the size or age of the universe and 
second, on a more earthly plane, of the dependence of fragment size predic- 
tions by maximum entropy methods/18) In the present work it is shown 
how the choice of bin sizes influences the averaging of data and thereby 
affects the observed fluctuations. 

A moment analysis of fragment-size fluctuations has recently indicated 
intermittency behavior in the breakup of high-energy nuclear matter 
studied in emulsion and fragment-size distributions obtained in a selective 
manner, t19) Some of these data are treated in the present paper. This is 
done here by the adaptation of the maximum entropy method (MEM) 
to include a random process, in a manner not heretofore proposed, 
although MEM has been used for chaos, (2~ for nuclear fragmentation 
mechanisms,~21'22) and for transport phenomena occurring on a mesocopic 
scale. (23) Our approach gives in a general and simple manner MEM 
distributions when randomness is present in a cascading process of nuclear 
breakup. 

This type of inherent randomness is called "dynamic fluctuations" and 
has been distinguished from statistical fluctuations. (5'24) The advocated use 
of factorial moments instead of ordinary moments has separated in an 
extraordinarily elegant way the two types of irregularities. (5) We believe 
that an information-theoretic distinction between the two types related to 
noisy channels (25'26) has something to offer by way of clarification and this 
is given in the next section, although here no new results are reached. 

2. T W O  TYPES OF FLUCTUATIONS 

Following Bialas and Peschanski (5'13) and other authors,(2~ one can 
make a distinction between so-called dynamic and statistical fluctuations. 
Experimental scatter includes both and it is the task of theory to disen- 
tangle them. In this section we show how the information-entropy descrip- 
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tion reproduces the known results and provides a clear understanding of 
the two types of fluctuations in terms of familiar concepts, like prior and 
conditional (posterior) probabilities. The theory (if it can be called that) of 
this section will then enable us to continue the treatment to the prior 
probabilities only, which represent dynamic scatter, and to forget about 
statistical fluctuations whose role in the theory is dealt with here. 

We consider the outcomes n~ of measurements, such that n~ is the 
number of observed occurrences of event-type (bin) labeled m (=  1,..., M), 
summing to a fixed number N, 

M 

n ' = N  (l) 
m = l  

We suppose that there is an underlying distribution 

P({nm}) (2) 

for the frequency of events that occur; however, not all events are obsrved 
or not in the proportion expected from (2). We require the distribution of 
observed events, namely 

Whether the pursued analogy is that of noisy channels or conditional 
distributions or priors-posteriors, the following relation is evident: 

P'({,=})= Z 
{-m} 

As a matter of personal preference, we shall regard P(nm) as priors, the 
P'(nm) as observed distributions, and P(n'm I nm) as conditionals. The last 
induces statistical fluctuations in P', which however, also contains dynamic 
fluctuations arising from P(nm) (as long as this is not a delta function). We 
shall treat "the prior" P in the next section; here we derive P(n'm [ nm) from 
maximum-entropy considerations. 

Associating probabilities Pm and p~ with observed numbers according 
to 

Pm = nm/N 
(3) 

p~ = n'm/N 

we understand by Pm (Pm) the probability of each one of the n~ (nm) events 
taking place. By (1), there are N events in all; we can therefore write the 
unconditional entropy S{p'm} for all these events in the following form: 
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S{p~}=N Z P({P'm} ] {Pm})S({p'm} [ {Pm}) 
{p.,} 

-- ~ P({P'.,} I {Pm})IogP({P'm} [ {Pm}) (4) 
{p,,) 

where the first term includes a sum over all combinations of observations 
of a single event (that eventually produces n4 = 1, say, and nm= 0, rn r 4) 
and involves partial entropies, which are, in fact, the cross-entropies for 
events {p ' }  following the hypothesis {Pm} for the event. Since there are N 
events with the same a priori cross-entropy, the information deficiency 
becomes multiplied by N. The last term represents the information 
deficiency for the possible choices of the conditional probabilities 

Maximize S{p'm } by solving 

t'({p;} I {pro}) 

~S 
= 0  

oe({p'~} l {pm}) 

and one obtains 

p({p~}[  {pm})=eNS({P;~l{Pm}l " 

where p is a normalizing constant for the probabilities. However, the 
conditional entropy is known in the form 

S({p~,} [ {Pm})= --~ P',,, log(pm/pm) 
m 

Introducing the numbers n instead of probabilities p, through (3), and 
normalizing, we derive 

P({P~,} I {Pm})=N! ~[ (5) 
I'/m! m- 

or the multinomial or Bernoulli distribution. The remarkable relationship 
between experimental-factorial distributions and the ordinary moment of 
the underlying distribution [P(nm) in our nomenclature] that has been 
described by Bialas and Peschanski is based on the form of the conditional 
given in (5). 

Our work in the sequel relates to the scatter present in the (prior 
or underlying) P(nm) distribution. The present section makes clear the 
entropy interpretation of the conditiona!. 
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3. THE PHYSICAL M O D E L  A N D  ITS T R E A T M E N T  

Our description aims at establishing a clear relation between the physi- 
cal processes taking place in the ensemble and the way measurements are 
taken. At the root of the physical processes are the N basic states of the 
system (label j), which could be identified with the eigenstates of some 
Hamiltonian, but, alternatively, could represent (in a fragmentation pro- 
cess) the sizes of the fragment clusters, disregarding internal eigennumbers 
of fragments. We assume that the physical process distributes the initial 
ensemble into the various states, and does so by a cascade process of qy 
( f  for final) steps, at the end of which the ensemble is distributed among 
the N states, in a manner similar to the energy distribution in turbulence. 

If the cascade steps operate on g equal alternatives, then the total 
number of states in qs steps is 

N= gqJ (6) 

irrespective of the way measurements or bin sizes are chosen. We now 
assume that with each of the final states j we can associate a "strength 
factor" ~bj that depends on the history of the cascade process. In the spirit 
of the maximum entropy method we shall impose an additive constraint on 
~bj (though we might have used the strength factors in a rate-equation 
approach, with no less justification). 

The constraint involves ~j, the mean number of systems belonging to 
state j, in the form 

N 

NF= ~ ~j~j (7) 
j = l  

where F is a constant that depends on the nature of the process (including 
initial conditions, ensemble preparation, and possibly the mode of cas- 
cading). It would be natural to call NF the totality of a conserved quantity 
(e.g., energy), but in MEM, NF will also depend on our knowledge, which 
is subjective. If j is ordered, e.g., with the size of the fragments, ~bj will be 
a function of j exhibiting some rough regularity. We shall be concerned 
almost exclusively with the deviations in ~bj from this regularity (the 
fluctuating part) and can therefore take the regular part of ~bj as flat. For 
the fluctuations we shall assume, analogously to Kolmogorov's third 
hypothesis, ~2'3) that they accumulate multiplicatively at each cascade step, 
in a manner that has been described before. ~ In fact, measurements 
made on individual j-states will find log ~bj distributed (approximately) nor- 
mally around its mean and with a deviation of qz a 2, cr 2 being the deviation 
at each cascade step. (Other distributions than the normal are conceivable 
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and will not in general lead to a variance proportional to qf, the length of 
the cascade. If the strength factor ~b is reached by a Brownian-type or 
Levy-Wiener-Bachelier process, its distribution will have a variance 
proportional to q f,  but the intermittency exponents will not depend on the 
bin size in the experimentally observed fashion.) If, however, one scans r 
(number of) bins simultaneously, or equivalently, if one reduces the bin 
number from N to N/r = M, then the fluctuation is each bin is reduced, 
approximately to q~2, where 

M = g  q, r = g  u+ q, q < q /  (8) 

The reason for the reduction is the averaging over r strengths in each bin. 
Let us describe the scanning procedure in the MEM formalism, 

namely by the introduction of priors (used in the sense of rescaling of 
observations, rather than is the sense of some background belief as in the 
previous section). We write the Langrangian [a term used for the informa- 
tion entropy together with the constraint, Eq. (7)] in the original, state 
representation 

L 
j ,  nj t hi j," I 

where p(nj, j) is the probability to find n/occurrences of the j-state. The 
corresponding probability P(nm, m) in the bin representation (with m 
l~beling the bins from 1 to M) is obtained with a prior II(m), such that 

P(nm, m) = ll(m) P[n/, j(m)] 

The prior H(m) is simply the Jacobian for passing from the (j) to the bin 
(m) representation, namely 

H(m) dj(m) (10) 

The first term in (9) becomes (noting the changed summation) 

S({m}) = - ~ P(nm, m)log[P(nm, m)/II(m)] 
m ,  nm 
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The second sum appearing in (9) is remanipulated, as follows: 

(~jp(nj, j) nj= ~ H(m) q~j~m,p(nj, j(m) ) nj (11) 
j rn, nj 

Zi~m Oi , m) nm (12) = E ~--~m -1 p(nm, 
m, nm 

= Z qSmPp(nm, m) nm (13) 
m,nrn 

where, in passing from (11) to (12), we "decoupled" (in the sense of a mean 
field approximation) the summations over j in each bin (represented by 
~}ern) and in (13) we have denoted the bin averaged strengths by q~m. 

Substituting in (9), we obtain from the maximum entropy condition, 
namely OL/•P(nm, m ) =  0, the solutions 

P(nm, m)=re-;~"n~-~m=r(1-e  ~m) e ~ " ~  (14) 

The mean number of states in the m-bin is 

~ l m - - - - r ( e ; ~ m - - 1 )  1 ( 1 5 )  

which is to be compared to the MEM solution in the j-state representation, 

fij= (eX~'-- 1) - '  (16) 

The Lagrange multiplier in (15) is to be evaluated from the constraint 
in its bin averaged form, namely 

M 

r ~ ~m(e;4;m--1) I = N F  (17) 
m = l  

The method used for evaluating (17) and obtaining NF will be 
described after introduction of the /-moments employed in intermittency- 
exponent analysis. 

The Fluctuation i-Moments. The fluctuation in the m-bin occupation 
number is nrn/flm, and the overall average is N/m = r, so that the fluctuation 
/-moment can be defined as 

M ~ ~ \nmJ 

It turns out that the following result holds to a remarkable accuracy for the 
MEM solution given in (14) for i moderately large: 

E '  nmP(nm, m)~K~(;t~m ) ~ (19) 

with K~ independent of 20~,,,. 
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A saddle point evaluation indeed reproduces the above result with 
K i ~- i! To see this, we introduce from (14) into (19) the nm-dependent part 
of P ( n m ,  m), SO that the summand in (19) is exp[i log n m - - ( ' ~ m ) n m ]  with 
a maximum at n m = (2~m)/i. What is remarkable is that the result (19) was 
confirmed by numerical computation (summation) to a high degree of 
accuracy and for a wide range of values of the parameter ~,~ (<i) .  We 
therefore proceed to the calculation of the following bin-average expression 
for Ci, strictly valid for i large 

1 
(e ~m 1) i C , ~  - ()~ ' (20) 

m = l  

Following previous works on intermittency, (4'5) and proceeding in the 
spirit of our remarks about the distribution of ~m, we rewrite the last 
expression as a sum over the q~,, distribution in the form 

[ - (l~ q~- l~ q~~ ] (21) 
Ci-(nq~2)a/Zfo d~(2q~)-i- ' (e; '~-l) iexp 2qa2 

This method for evaluating (20) is essentially equivalent to the f -a  method, 
also called the multifractal model, (13) but is more accurate, since it requires 
less reliance on asymptotic behavior. 

In (21), ~0 represents a mean value of ~m' Unlike the deviation 
qa 2, it does not depend on the bin number M or on the exponent 
q=logM/logg.  Therefore the presently used mechanism differs from 
those previously proposed(5): as will be shown, the term linear in i that 
appears in the intermittency exponent is due to fluctuation. The Lagrange 
multiplier that appears in (21) is obtained by solving (17). Employing the 
distribution function, we obtain an equation similar to that in (21), except 
that Ci is replaced by F and the two factors in parentheses under the 
integral are exchanged for 

(e ~ - 1 )  1 (22) 

Writing the intermittency exponent f i  as 

f~ ~ log C~/log M (23) 

= (log Ci/log g) q-1 (24) 

we find f,. as a function of the constraint parameter F [in (17)] and of the 
deviation a 2. The branching number g enters as a scaling parameter only; 
the mean q~o is irrelevant to the results, though it allows physical interpreta- 
tion to be meaningful. In practice, we have evaluated the integrals over q~ 
by a saddle point procedure. 

Values of the moments calculated for a few values of i are shown in 
Fig. 1 as function of the number of bins M, for a branching number per 
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Fig. 1. Bin-number dependence of some fluctuation moments Ci. The standard deviation is 
a 2 =  (a)0.01, (b)0.04. Other  parameters: Iog F [in the constraint, Eq. (7)] = 1, g (cascade 
number)  ~ 3., 
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cascade g ~ 3 and constraint parameter F ~  3. For a low value of the devia- 
tion a 2 ,-~ 0.01, the plots of log Ci appear to depend linearly on log M and 
have increasing slopes as the moment index i increases (Fig. la); however, 
for a higher value of 0 "2'~' 0.04, log Ci increases superlinearly with log M r 
(Fig. lb). 

The intermittency exponents f i  [Eq. (23)] increase with i, as observed 
in experiments for rapidity and multifragmentation of nuclei. In fact, when 
written in the form 

f i  = ~ ( i -  1) + f l [ ( i -  1)2 + higher order terms in i] (25) 

both ~ and fl are small compared to unity (as observed) and increase 
with the deviation a 2. This is natural, since the intermittency arises from 
the fluctuations that the systems feel while undergoing cascade. We 
reemphasize that the deviations are due to the dynamics of the process and 
not to statistics of samplings. In fact, the chosen statistics of sampling 
(namely, having bins accommodating a significant number r of states) sup- 
presses the deviations due to averaging inside the bins: what one sees is the 
"remainder" from the dynamic fluctuation becoming more pronounced as 
the bin content (r) decreases and the bin number M (=N/r )  increases. 

The plot of f i  against i is similar to that based on observed multi- 
fragmentation results, though the quadratic coefficient fl is larger in the 
computation (Fig. 2) than in some observations. 

0.3 i 

0 . 2 -  Q" 

./  

fi �9 ei 

0.1 �9 ,' 0 

�9 J 

0 
2 4 6 8 10 

i 

Fig. 2. Intermittency exponent f~ versus moment  index i. Experimental data points (not 
including error bounds) are from ref. 19 for events containing several large fragments. Dots 
show f ,  and squares (against r ight-hand scale) the free energy ~i. Computed curves of fi  are 
for g -~ 3 and for F =  2.8, 0 .2 = 0.04 (full curve), and F =  1.6, 0 .2 = 0.01 (broken curve). 
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We have inves t iga ted  the dependence  of the exponents  on the con- 
s t ra in t  F with a view of d iscover ing indica t ions  of  some phase  t ransi t ion.  In  
par t icu lar ,  we find for the coefficients c~ and  /3 in (25) that  these (Fig. 3) 
decrease with decreas ing size of the cons t ra in t  p a r a m e t e r  F and  vanish at  
some value of F ~  1. Vanishing  in te rmi t tency  exponents  have been observed  
in nuclear  mul t i f ragmenta t ion ,  p rov ided  that  constraints on the sampling 
procedure are removed:  e.g., by  relaxing cons t ra in ts  on mul t ip l ic i ty  or  on 

finding a significant number  of large fragments.  It is not  clear  to us to wha t  
extent  the lowering of the cons t ra in t  p a r a m e t e r  F is connec ted  with the 
remova l  of the constra int .  (We note  tha t  a rguments  have been given that  
the absence of cons t ra in ts  character izes  chaot ic  behavior .  (2~ It  remains  to 
be seen whether  this c laim is compa t ib l e  with the mul t i f r agmen ta t ion  
result .)  

Fig. 3. Dependence of computed quantities on the constraint parameter F. The full line 
shows the linear coefficient c~ [in Eq. (20)] and the broken line the superlinear coefficient/3. 
The shaded region represents computed values of the Lagrange multiplier multiplied by 0.01~0 
(~0 is the geometric mean of the interaction strengths over the cascade process). The bottom 
of the shaded region is for q = log M/log g = 1 (where M is the number of bins and g the 
branching number in the cascade process) and the top of the region is for q = 5. Parameters 
in the calculation: a2 = 0.04, g ~- 3. 
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The minimum icrit of the free energy 

~i = ( f i  + 1 ) / i -  1 (26) 

locates the critical index for a phase transition. (5'15/For the representation 
in (25), one finds 

icrit---- [1 -k- (1 - ~)/fl]I/2 (27) 

which is well approximated for the small values of ~ and fl in our results 
by 

icrit ~ (1/fl) 1/2 (28)  

In the same limit, the energy minimum lies at 

e ~ 2 x /~  (29) 

The experimental ei based on ref. 12 are plotted (squares) in Fig. 2 against 
the right-hand scale and indicate the presence of a minimum in ~i (if at all) 
well beyond the last experimental point i =  8. 

The dependence of the computed critical energy parameters on the 
constraint parameter F is readily seen from Fig. 3, using formulas (28) 
and (29). 

4. DISCUSSION 

Using physical ideas that have in the past been associated with inter- 
mittency, we have adapted the entropy maximization method to obtain a 
precise connection between the fluctuation distribution and a stochastic 
mechanism. The role of the bin size has been clarified. The calculated fluc- 
tuation moments depend, as expected, on the spread (a) in the stochastic 
mechanism and on the numerical value I F  in Eq. (12)] of the constraint. 
Our calculated moments resemble quite well those observed for the fluctua- 
tion of sizes in multifragmented nuclei. (a9) This appears further to justify 
the use of the maximum entropy method in fragmentation. (27) However, we 
have not found support from our results for a cooperative effect (phase 
transition) in multifragmentation. 

The availability of distributions should encourage a more extensive use 
of higher moments of fluctuation, as function of observational bin sizes, in 
other fields where stochastic mechanisms operate (e.g., surface roughness, 
growth processes) with a view of learning about the nature of the inter- 
action. Theoretically, further studies ought to include the influence of more 
discriminative processes than the flat background mechanism used by us. 
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